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IMPEDANCE-MATCH AND ELEMENT-PATTERN
CONSTRAINTS FOR FINITE ARRAYS

INTRODUCTION

This report deals with an investigation of mutual coupling in finite and general an-
tenna arrays. The cost of large phased arrays and the need to make arrays conform to
streamilined contours have stimulated interest in arrays of modest size, On the other hand
the simplicity of the infinite-array model is so atiractive, particularly in the case of regular
arrays, that the lower bound on the size of arrays for which this model may be usefuily
applied is of great practical importance. The element pattem for a single excited element
of an infinite array (in the presence of the remaining elements terminated by loads) is
given by the classic formulas of Allen [1) and Hannan (2,3]. The limiting form of the
element pattern resulting when such an array is matched in impedance as a phased array
at all scan angles was given by Wasylkiwskyj and Kahn [4]. Here the limiting form of
the element pattem is obtained by direct calculation for finite arrays of general configura.
tion. For regular arrays, results obtained for the finite array confirm the lower bounds
on array size obtained from considerations of efficiency in {inite-excited infinite arrays
[5]. The infinite array closoly models interior clements of annya larger than 26 elements
along any diameter.

Good impedance match over a wide range of excitations for all scan angles is fre-
quently claimed, at least as a design objective, for an array antenna. A technique is de-
veloped in the following for predicting the element patterns which would result if any
given array of antennas were appropriately matched fn impadance by means of a lossless
feed network designed for this purpose. When the requirement for match is most broadly
interpreted, namely, as match for al! excitations, the form of owr msult can be anticipated
from the conservation of energy (6] .

Considnr an array of N antonnas as a dissipative N-port with input impedance wmatrix
Z= R +jX. Assutie the oxistenoce of a lossless 2N-port wiich, if inserted between the
array and N gencrators with unit internal impedance, will have the unit matrix as its input
impedance mateix. Designating the column matrix of currents at the antenna ports by |
end that at the input to the matching network by |, the conservation of enorgy implies
1T (PRI, The superscript + denotes the complex-conjugate transpose matrix. The loss-
less 2N-port miust therefore cffect the transformation § = RN, The element pattorns
- of the array, matched for all excitations, may be computed from these ewrrents. The
existence of a matching network was demonstrated by Bergfiied {7) and Bergiried and
"Kahn {8]. The analysis and computational results presonted here are based on a more
_convenient network structure,

Genenally impedance imateh for all excitations doos not constitute an appropriate
objective. This distinction between match for all excitations and an appropriate partial

Mmm&cnpt wb.mwed Barch 28, 1976.
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match is essentjal in the application of this method to closely spaceqd arrays. For such
arrays the indiscriminate requirement of match for all excitations leads to difficulties in
tuning and excitation (and in computation) akin to those associated with supergain [9].
The excitations and element pattems derived using partial matching are not simply pre-
dicted by the conservation of energy.

A uniform linear array of infinite line sources will be used to illustrate the general
theoretical results. Since the elements have infinite extent, this array must be considered
as a special case of a planar array; it is the simplest example of such an array. When the
computational results for closely spaced elements are studied, the effect of using an ap-
propriate partial match, as opposed to one for all excitations, is apparent. The element
patterns derived for appropriately matched finite arrays will be compared with those of
an infinite array (the limiting case) obtained by an independent technique,

NETWORK PRELIMINARIES
Conuections and Port Normalization Numbers

The desired excitation of a given arzay of antennas will be supplied from generators
with finite intermal impedance through a lossless feed network. It is convenient to be able
to view this interconnection either in terms of voltages and currents or altematively in
terms of incident and reflected waves. In this soction some aspects of the interconnection
process will be reviewed {10).

The interconnection of two 2-ports is shown in Fig. 1. In terms of voltage and cur-
rents with polarities and directions shown in the dingmm this interconnection clearly
requires

Ve V', (la)
I= -, X (16)

From the diagram it would appoar )uat a5 clearly for inddem. t..d reflected wave ampli-
tudes ¢ and b that

Fohinsrtons @
| T .‘-—u .
M' grrimsvainend
o - —— 1 * - ——
X r
v v
- -

y S——
Fig. 1~lnterconnection of two 2-ports

2
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a=1b, (2a)
b=4d. (2b)

However, when these incident and reflected wave quantities are defined with respect to
complex normalization numbers, the defining relations being

2a/R; = V + ZI, (3a)

2b\/R; = V- Z;I R {3b)
the relations (2) must be viewed with some caution.

Figure 2 presents the physical interpretation of the defining relation (3a). When
Eg = 2a+/Ry, this relation is the Kirchhoff-loop equation for the circuit shown. Evidently
Z must have the value Z = V/I. The average power transferred from the generator into Z

is, algebraically,

P = Re (VD = lal® - 2. (4)

Thus maximum power is transferred to Z when b = 0. From Eq. (3b) this implies

\4
T=Z:=Z : (5)

in agreement with the principle of conjugate impedance match.

Lot us now check the consistency of relations (1) and (2). Direct substitution in
(3) yiolds '

W'VE, = V' - 21, C (&)
2R, = V' + 200  (6b)

These relations are of the same form as (3) excopt that 2§ replaces Zy. That is, the
“ovident” interconnection relations (2) hold only whea the complex normalization rum-
vers Zy and 2} are undorstood to be complex conjugates of one another.

Fig. 2—Bquivalent circuit for interpretation
of norvnalization aumbers 2,

P T Y i v o g O
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In the sequel it will be assumed that the port normalization numbers Z; are either
real or that (when an identification such as b’ with a is made) the appropriate conjugate
relation between the normalization numbers Z; is maintained.

Representations of the Scattering Matrix and Scattering-Transfer Matrix

The scattering matrix relates incident and reflected wave amplitudes. Corresponding
with an impedance matrix Z,

2R}%b = (V-2Z51) = (2~ 20, (Ta)
2R}1%a = (V+2Z.0) = (Z+2Z))1. (7b)
One eliminating |

2R}/%b = (Z-Z7)(Z +2,) 2R}/ %a
or

b= [351/3(3_ Z;)(Z*Zg) ‘R}"‘"]a
= RM2(1- 2R(Z + 2,)"|R}/%a
= [1-2R{32+ 2,) 'R} e
The scattering matnix
S'= RMYUZ- 2002+ 2,) R}P
= 1~ 2RI3ZeZ)PRMP | (8)
B8 symmetric if Z 5 symmetric, as i most easily seen from the second form of (8).

Consider the 2V-port network shown in Fig. 3. The incident and reflocted wave
amplitudes are ordered into column vectors a and b, so that

b.
sel-2) M LE (— °) (9a)
4 by

a, = [a;ag ...ay] (9b)

where

- = [Oye) ayez o020 (8c)
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de T

L b —
o
T e
(2)  mmand P (N+2]}
(3} ——— GIVEN e (Ne3)
2N-PORT
[ ]
[ ] [ ]
[ ]
{N) et o (2N}
!‘ m . . ‘_u
{rmerm by b —{
\N
(1) — frmee (R0 1)
(73 b (N2}
{3) REVEASED = (Ne3}
SR-PORY
. .
™ »
[ ]
) ~——t b ()

&

/
3‘1' .s?.ﬁ_ AN Sa
Sga ) Sy -

in which 8, and ’ﬁ donote the row vertors which are the transpose of the column vectors
8, and ag respectively, and whore ho and b;; denoto s%milnr row vectors, Thoen

(10

A 2N-port closely telated to S is the roversed 2N-port, that is, the 2NV-port oltained when
the network is tumed around (physivally, as is often possible) laving port designations
fixed in place. Thus old port 1 becoimes riew part NV + 1, ete. (Of course, if the port
designations are kept fixed, attached to the network, the smtmm; watrix cannot dmxge
when the notwork is moved.) ,

It follows that the scattering matrix of the new network may te inferred rom (10).

b
) ( _B_) . 26
bﬁ

.,(

The new colunn veitors 8’ and b’ are

by

Y

bp

(11a)




WALTER K. KAHN

O T Y e 0 PN (11b)
83 3y

where

R =

s--lo
Qlt—l

t
{
- -
|
!

Hence b = Sa implies b’ = RSR“‘& or

Ssg 1 S
8 SsRL o {- BB (12)
Sap : Saa
Note that in this instance
i .
a-1 0 1 a3 ’ 13
= Q> = oo n"‘ 31s
K 17 7o b (13)
t

Attention is now turned to the scattering-transfer matrix, The mtunng stransfar

~ matrix of a given 2N-port relates the amphtudes aa and b, with &, and by (esther than

G, and by, with 83 and by), where now aj, and by, are amphtudes associated with ports 1
through N of a sucoseding 2N-port connected to the given 2W.port at ports N + 1 through
AN, This & illustrated in Fig. 4. The scatteringtransfer matrix 7, may sbso be found in
terms of the elements of 8. By definition

Goly
A\ ba by / .

and from (10) and Fig. 4

a \ Sia .
_.‘a..-.vg ..-b.?-. - -«-‘}a-l—g‘;. ..‘??- . (153)
) \%) \ 01 1)\ |
and
1 0 \ '
_?— C IR Q...‘.uu ..@... . ) (18&,)

The scattering-transfer matrix is obtaited on eliminating 8 {rom the above,




i
i

e, 1
i

I Y ey TV T 20,
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[ ]
L
L]
3 [} :
G, wm——— R * 8 wr—— .
Q | v, __..'
{1) ot 11

ANPORT

t2)

(3) cormamd ty

[ 2 2 ]
[ X 3]

s | Y el -
it Soa = SopfaiSac { SpsSag) (15¢)
-835 o : é’nll!
t
! .
- t POV I ‘ (16)

When such a network is lossless and reciprocal, the scattering watnx being therefore uni-
tary and syiumetric, '

-

VAR T S0 SR T A T 8 I A TS AT i S A LR A e
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2

S ~1%

Sup = Spa = Spa - an

An appropriate mterconnectxon of ideal transformers leads to a purely real scattering
matiix Sqp = Sga It follows that such a network is “undone” by cascade connection
with its reverse; that is,

TgTasg = 1 (18)

when Sy contains only real elements.

The scattering matrix of a 2N-port comprising a set of distinct lengths £, of lossless
trunsmission line, each with characteristic impedance (resistance) equal to the correspond-
ing port (real) normalization number, is

0 : ¢ /@
ot === 18a
e®r 0 (1)
where 6 is the real diagonal matrix
8 = d.iag [Klgl, l\'an, ‘eny KNQN] . (19h)
The carresponding scattering-tronsfer matrix is thovefore
i !
€ O 0 o
Elbaliadh L ALl Y ]
o ! 0 @

1

In gei\eml this matrix is not real; henee coscading with its “reverse” doos wot “undo™ the
effect of the originai natwork.

Consider the 2N-port (20) to be terminated by an N-port with scattexing matsx §.
From (10) oune has :

/ by 0 179 3,
(_“ T Eabtl | PR N Y
by e 0 Sty
vso that
b, = (7989, . - {22)
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EIGENWAVE ANALYSIS OF ARRAYS
Uniform Versus General Arrays

For sufficiently large arrays the characteristics of the array (and in particular the
eigenvalues) ought to approach those of the infinite array in some sense. Since the eigen-
values for a uniform infinite array of reciprocal antennas are degenerate, we may expect
to see degeneracy or near degeneracy in the large finite array. This degeneracy may cause
difficulty with some computational algorithms and certainly complicates perturbation
analyses.

The uniform circular array shares many of the features of large linear arrays. The
eigenvectors for large arrays approach those of the infinite linear array, and the eigen-
values exhibit reciprocity degeneracy (ir. pairs).

In comparison with uniform arrays of regularly spaced identical antennas, general
Jrays of nonuniformly spaced antennas have been little used. For this reason, and to
dispose of the complicating factor of near degeneracy of the eigenvalue problem to be
solved, this report focuses on the uniform case. This is accomplished through symmetry
analysis. From the standpoint of computation, then, each of the subspace arrays (odd
and even) of a uniform array constitutes a general array in which degeneracies arise only
accidentally. The straightforward analysis which is applicable in each subspace therefore
also covers the case of the general nonuniform array.

The uniform planar array and the circular cylindrical array generally possess a 180°
rotation, reflection, or equivalent symmetry. The eigenvalue problem may be separated
in accordance with the invariant subspaces of this symmetry. The formal analysis of this

. symmetry is taken up next.

- “Twofold Symmetry Analysis

Consider a uniform linear or uniform circular array with ports numbered as shown
in Fig. 5 comprising N = 2L + 1 elements. The twofold symmeiry operation is represented

_ by the matrix

0 : 0,: o_{‘_\

R R

F = 011 L0 |= ¥ (23)
op ; 0 | 0

: ."'éperating on a col''mn matrix of terminal quantities ordered as a,

il

8 ={ a |» {24a)

——— -

8
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ese 0 © 0 O 0O 0 O O e

0
eee -4 -3 -2 -t O #1 +2 43 +4 4e0e PORT NO.
1

/&
/

-
Y
=}

(-2} /

Fig. 5—Uniform linear array and uniform circular array

where

8y = [a-g8.z4y oo 02004) : (24b)
and

‘aﬁ = [0;02 "'aL"laL] . ) '(240)

The tilde dexotes the transpose. The L-dimensional submatrix o; is
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The transformation of terminal quantities

Ja' = a, (26)
where
1, , 0 | 1
o1 T o .
I —— | |
V2 _.....L_\{Q_.L___ ' (27)
! '
G, . 0] 5—0L

completely reduces the symmetry operator § to the form F':

iq | 1
1, , 0 , 0

———r——=t-=-

=99 =({ 0 + 1 1 0 | (28)

I NN R

\0 | 0 |-1

Note that §= T = 51,
The effect of the transformation J on the scattering matrix of an array will be illus-

trated for a circular array with N = 5 elements and a linear arvay with N = 3 elements,
For the circular array the scattering matyix has the form

{ t
@ B:‘r:‘r g
B a8y v
LT T
S=2ly prat B ¥y (29a)
______ doem ok e e o e
H |
t t
i} 717:ﬂ o

where the ports are numbered as shown in Fig. 6 and Eqs. (24). When tmusforméd to
primed terminal quantities according to (26),

§ =98y

!

a+f avry /2|
By ovy VT O 0

!

i

W ORI o« 0 o | (29b)
0 0 0 :ﬂ"‘ﬂ ﬁ"")'l
|
¢ 0 0 8-« 0‘"‘7/
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The scattering matrix for a uniform array with N = 3 elements has the form

g~ &
S=|ly a «v], (30a)
5§ v B

where agoin the ports a’e numbered as shown in Fig. 5 and Eqgs. (24). When transformed
tc primed terminal quantities according to (26),

|
B+ 'r\/f: 0
8 =J8T = /T @« 0 . (30b)
0 0 ,B-38

Consider now the conventionz! set of eiger -ectors for a circular array

e =[], -Lee<y, (31a)
and

™ = - oxXp j (:—E mQ) . (31b)

" = g ewily

These also constitute the conventional form of excilatioc for the linear phased array,
although they nre eigenvectors of such an unay, only for the case ¢, m - oo, The latter
can be deduced from considerations of symmetry. The ronpiex-conjugate eigenvectors
are degenerate, that is, the cigenvalues belonging to distinet complex eigenvectors (m) and
(~m) are the same. The same paising is accomplisk. 1 by the operator 5. ¥ also effects
a change of sign in the exponent i1, Eq. (31) through a cha ge in th. sign of £. It fo)-
lows ihat

ult) < %-(1 SO L e m< L, C(%2)

is also an eigenvector (possibly the same eigenvector) ot the circular or infinite linert
array. Therefore these new eigenvector of the anay are by cunstyuction (a) nal and
(b} eigesvector: of F, A Jifferent labeling » is usually convenient for the vectors u(n),
The correspondence of n and m is in any event established by (32).

The eigenwvectors of ¥ are classed as oither even (belonging to the cigenvalue +1) ot
odd (belonging to the eigenvalue 1) the vector

u™ = L1+ FHem (38)
is even, and the vector

12

e (ot . L,
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u® = 1 (1- Fyem (33b)

is odd.

The operators (1/2)(1 £ ) of Eqs. (33) are readily shown to be projection operators
associated with orthogonal subspaces whose direct sum is the complete space. They are
projection operations (idempotent):

[-.;— (11:3?)]2 =t (34a)
They are orthogonal:
Fa+HFA-H=Fa-Hra+H=0 (34b)
And they are complete:
FA+H+FaA-NH=1, (34)

To make these results concrete, the form of the matrix transformation which sorts
f}ut tfl}e eigenvectors according to the above scheme is computed explicitly. Recall that
"% and that

gu,(u) = u(“); ’ (36&)
therefore
'™ = % F(1x Fem, (36b)

The transformation J sorts any even portion of u(") into the first L + 1 rows of the vec-
tor 4'() and any odd portion of u(™) into the last L rows of u'("), When the matrix
product in (36b) is computed using the explicit representations of ¥ (Eq. (23)), and

J (Eq. (27)), vne finds

1, 1 0 | o

1* - 1 e~

FIA+S=gpl 01 V2L 0 (380)

: { {
o! o' o
and

0,0 . o

1 . 1 Il Shaihaiieslh St

=J1~F) === 0 1+ 0

zIa-H="el 01 01 0 (36b)
I 0 | -0
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From che placement of zeros in (36a) and (36b) 1t is clear that (1 + F) has projected out

the even part of t{™), so that the last L rows of u'(") are necessarily zeros, and that (1 — ¥)
has projected out only the odd part of t{™), so that the first L + 1 rows of u'(") are nec-

essarily zeros.

In summary the preceding analysis shows that the degenerate eigenvalues of the cir-
cular and infinite linear array are split between the two invariant subspaces belonging to
¥ and that the two separate reduced subspaces will contain only accidental degeneracies.
The eigenvectors u '(n), properly renormalized where necessary, may be employed together
with straightforward nondegenerate perturbation theory to solve for the eigenvectors of
finite linear arrays.

CALCULATION OF ELEMENT PATTERNS FOR SUITABLY MATCHED ARRAYS
Excitation and the Radiation Fields

An elementary radiator of an array is usually specified in terms of its properties
when isolated from the array environment. In a dipole amay, for example, the elementary
dipole is commonly specified in terms of the properties of the isolated dipole, This in-
formation is in general not sufficient to permit calculation of an element pattern in the
array environment. However, when all antennas but the one antenna element excited are
terminated in some fixed reactance, the element pattern in the array environment may be
nearly the same as the isolated antenna pattern. An array of small dipoles is one example.
When all dipoles but one are open-circuited, the pattern of the single dipole is nearly that
of an isolated dipole. An array of slots in a large ground plane is another. When all slots
but one are short-circuited, the pattern of the single excited slot is nearly that of a single
slot in a ground plane. For canonical minimum-cattering antennas {11] the element
patterns in the open-circuited array environment coincide with the isolated-element pat-
terns. Without any restrictions on antenna type it will be assumed in this section that
the radiated field of a single excited element in the open-circuited-array environment is a
known: complex vector function of the direction angles § and ¢ :

o), ¢) , (37)

and is normalized so that with unit incident power excitation the radiated power is

Pua = [ 110,002 a2

2
Zy - 23

e ]

=1-1z vz

' ' (38)

where Zo is the input impedance to the excited element and d§2 is the element of solid
angle sin 0 d0d¢. A common altermative normalization fixes on the radiation amplitude
produced by a unit input current; this field will be distinguished by an 7 subscnpt. 1(0,9).
The corresponding power normalization is thon

.14
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Prad = f 71240, ¢)* a2 = Re Z,. (39)

Since for this open-circuit-environment condition

2VRja=V+ ZJI

= 2o+ 2, (40)
it follows that
Zy + 2
F(0) L 20 8 %(0)
f1°0,9) =——==—1 0,9). (41)
I 2\/R;
In the special case Z, = Zj
F20.8) = VE; 790,0). (42)

Smce'ff 10, 0}, is the pattern radiated by the nth element when all the remaining
currents are zero (open-circuit condition), one may employ straightforward superposition
to obtain the field for any set of currents, In particular, if the correct I, comresponding
to matched terminations at each element have been found from the mutual coupling
constraints (V = ZI nr b= Sa), then the field radiated by some element in the terminated
array environment for that clement is

fo.0) = Z Koo, o),
nv-L
Zow * 2,
W, A

In the tarnunawd»army environment the correct currents produced by a real genarator
are most easily expressed in terms of scattering quantities

\/R;’n = @y - by,

190,00, @)

=

I, .
z (Bpm = Spm)im (49

me-L
= Q.

} uce the difference between the open-circuit conditions (40) and the terminated-port
condition expressed by (44). Using (44),

16
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ZOn +Z‘

fo,0) = 760, ¢)d, . (45)

8 n=-1

The Modified Array

The input impedance matrix for an array of sntennas, considered as a dissipative
N-pert, generally has both resistive components R,,, and reactive components X, ,:

N
= ) Zmuly, (46)

n=1

where
Zmn = Ry * iXpp-

The resistive components are directly related to the element patterns in the open-circuited
environment through the conservation of energy:

= ke [ 0,00+ £ 0,010 | (47

The imaginary components have no such unique relationship with the patterns, although
in special cases the imaginary components may be connected with the analytic continua-
tion of the real patterns into the complex angular domain {11}. These reactive compo-
nents may obviously be canceled through a lossless reactance network, one form of which
is shown as

/B = J[Bunl = *+il=R;*Xnl

in Fig. 6 and is described in more detail subsequently, The combination of the array plus
this cancellation network is termed the modified array. The modified array has the real
input impedance matrix R = (R,,,].

The losaless mﬂctanoe cancellation network in Fig. 6 is formed by attachment of
quarter wavelengths of transmission line at each antenna port. If the transmission lines
all have the same characteristic impedance R,. then the mput short-circuit adnutram
matrix of the array plus tmmnnssxon lines is

Y= R;32 = (R;22,,). (48)

At this point then the shunt susceptance network jB = ~j Im Y is connected to produce
the desired cancellation effect. The addition of a second set of quarter-wavelength trans-
mission lines, also of characteristic impedance R,, reconverts the msxdnml real part of the
admittance matrix, Re Y, into the impedance matrix R = (R,,,] = R Re ¥,
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Matching Network for the Modified Linear Array

The general scheme of the matching network which will be employed in our caleula.
tions is shown in Fig. 7. There are three main sections: the first section (dwawn as three
large rectangles) is a real transparent 2N-port, the second section (drawn as N small rec-

“tangles) cansists of N disjoint lossless two-ports, and the third section (drawn as three

large rectangles~~a mirror image of the first section) s a real transparent 2N-port—~the
“roverse” of the first section. If the two-ports of the second section were just direct con-
nections, the fitst and third sections would “undo” one another. Excitation supplied at

- the left then would appear at the correspondingly labeled antenna input port at the right.

This apparently trivial point of notation is essential to preserve thie physical significtnee
of our results. We now specify each of these sections in moroe detail.

The large rectangle of the first section of Fig. 7 separates all array excitations into
even and odd portions as discussed carlier. The scatteﬁng mattix of this 2N-port [12] is

- @)

0.5
Sy = EREr
L |

where J, the transformation (26), is such that
17
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Pig. 7T—Matching network for symmetric array
!
R Sy 0
g = Fsg = (<ELaoo). (50)

The matrices S(+) and S(~) are the even and odd submatrices of the antenna-array scatter-
ing matrix S.

The two smaller rectangles of the first section have the 2(L + 1)-by-2(L + 1) scatter-
ing matrix

0 3(0)
Sﬂ'(*’ = ‘;?‘“—‘:‘—-* 7 (61a)
Je, O
and the 2L-by-2L scattering matrix
' v
0 1 ff(..)
= 15 Tl i (61b)
Ji-y, O

respectively, where ffp) and ff(_ y are matrices whose columis are the real, normalized
eigenvectore of the even and odd subscattering matrices S;ay and Si.) in some arbitrary
(but thercafter fixed) order. For a dotailed description of the third section of the match-
ing network, it now suffices to state it is the “reverse” of the first section.

The second or middle section performs the matching function, A typical 2-port
section is shown in Fig. 8. The scattering matrix of this transformer matching section is

+p f1-p%
m -p

) _ (62)
where
18
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Fig. 3—Typical tramformer matching 2-port

s Qr("' ny - Rg 53
p = p(E,n) Q,(i.n) Y Rg ( )
The notation Q,(%, n) refers to the input impedance at the nth even'(+) or nth odd (~)
matching two-port, which is connected between the two nth output parts of the networks
S(x) and its reverse. Q,(%, n) is, by construction, the nth even or nth odd eigenvalue of
the modified antenna arvay resistance mattix R. _

For an incident wave a; at terminal 2 of a matching 2-port, & wave amplitude b, is
gonerated at terminal 1 in accordance with (52):

by = pay+ J1-p2 g (b64s)
As arranged, by = 0, which means that
0~ Vl“pz.“; - £33, : ) » (64b)

henee

] P?' - e
h (m*‘“ ")

a9
= = (Ede)
J1 - p§ .

This is the wave which is incident on the first¢ection port and resulls in an incident wave
on the modified armay of o(1 - p2)"1/2a,, where @ is the eigenvector of R corresponding
to the port excited by a;. At the poris of the modified amay & reflected wave, p times

19
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the incident wave, is generated. The cunents (44) at the modified array, proportional to
the difference of incident and reflected amplitudes, are elements of the column matrix

B2~ pye(1 - p2) V2, (86)
The eigenvectors of the scattering matrix of the modified array § can be caiculated
from the eigenvectors of S(+). If the matrix eigenvectors of S(+) is &(+) and of S(-) is
&(~), that is,

[8(+, 1)e(+,2) ... &(+, L+ 1)] (56a)

&(+)
&~y = [e(-,1)e(~,2) ...8(-,L)], (56b)

& = [e(-L)e(-L +1) ... e(0) ... (L)}
I
|
= Jl--=+---17. (67)
0 i
i
With these definitions, for arbitrary input a to the matching network, Fig, 7, the
currents at the inputs to the modified array are
VEBi=a-b |  (88a)
Bt B [ B iy
= 6lL-ma+p)?)HBe  (58b)
= §(Q,17*8s,

where p is now the diagonal matrix

2 = diag [P(-L), o 9O, orvy PL)] | © {59)
and the matrix Q, is given by | | o
Q= dag [Q(-L)y orey GO, -y QL] . (690)

From the definition of §, (58b) may"iae rewritten |

VE i = RM3a | i60)

83 anticipated..
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Partial Match of the Armray

Although an array can be matched for almost all excitations by means of the feed
network developed in the preceding paragraphs, an exceptionsal circumstance occurs when
one of the eigenvalues of the resistance matrix is zero or infinite. This can happen with
an array of lossless antenna elements which actually fail to radiate and therefore present
a purely resctive impedance, which case is excluded from further consideration because
of its triviality. Even with an array of bona-fide antennas (antennas which are not purely
reactive) this exceptional circumstance can occur “accidentaily.” By this is raeant an
cccunence which can be removed simply by an infinitesima! perturbation of the amray.
Again, this is of little interest here. However for large closely-spaced regulur arrays a set
of small (or large) eigenvalues occurs in a nonaccidental fashion which consequently is of
physical interest,

As has already been mentioned, the characteristies of a large finite array approach
those of the infinite array. In the infinite-array model eigenexcitations produce either
delta-function beams (visible region) or no beams at all (invisible region) {13]. The active
impedance (eigenvalue) corresponding to an excitation which does not place a beam in
visibie space is purely reactive. The large finite array with the same spacing does not
preserve this absolute distinction between visible and invisible regions, because the pattems
of any finit: array are not indefinitely narrow. Some energy is divected along almost all
real engles. An excitation which would produce in-phase addition only at complex angles
(in the invisible region) in the case of finite arrays radiates into visible space through a
sidelobe. However the active input resistance comesponding to this condition is much
smaller or larger than unity or Re. Attempts to realize match in these cases are subject
to limitations closcly akin to those associated with the realization of supergain [9). This
aspect of the mateh problem will be illustrated later,

The matching network, Figs. 7 and 8, leaves the corraspanding elgenexcitation un-
affected whn the turns ratic of the transformer two-port (Fig. 8) corresponding to that
particulur cigenexcitation is replaced by a straight connection oy equivalently the tums
ratio is set ogual to unity: w = 1. A wave a, incident st the input to this transformer
produces wave amplitudes 8a, incident on the modified srray, ¢ being the eigeavector of
& involvad, The corresponding curtents exciting the modified array (44) are then
R;138(1 - p)ay. In genesal therefore (58) must be replaced by

'\/R;luu-b {(81)
= §P&a, | (61b)
whete

- B 1/2 L S

1 - R .
7o g | (15 s @ ot ] (62a)

- 2R .

o & ~1/2 oo :

dng L'..-.., Q,. (m), ..., mj—ﬁ-‘;, cev o (szl
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In Egs. (62) it is understood that the first expression within the brackets applies to eigen-
excitations (eigenvalues) that are matched and the second applies to eigenvalues that are
not matched. The currents (61) are now no longsr simply related to R1/2 and cannot be
found simply from energy cousiderations.

APPLICATION AND EXAMPLES

The preceding theory will now be applied to a linear arrey of infinite line sources.
The theory is in no way limited to uniform arrays, nor are the computations appreciably
simplified by the assumption of uniformity. Uniform arrays are chosen because of their
practical importance and because the comparison of the finite-array results with those ob-
tained for the corresponding infinite array [4] is of speciai interest. Pertinent results ob-
tained in Ref. 4 are summarized in Appendix A for convenience.

Consider an array of line sources distributed along the x axis of a Cartesian coordi-
nate system, each line source being of infinite extent and paraliel to the z axis. The pat-
tern of an individual line-source element is isotropic in the xy plane. The live source may
be one of electric current (in which case the electric vector is polarized along the z axis),
or the lins source may be one of magnetic current, sitnulating a narrow slot in a conduct-
ing plane {(in which case the magnetic vector is polarized nlong the z exis). The mutual
coupling between such elements may be computed on the assumption of a single-mode
element [14] or a canonical minimum-scattering antenna [11). The result for either
polarization is (at appropriate reference planes) [11]

 Zpq *l, m=a,
= B (klsy -2}, m e on, - (63)

where ¥, is the coordinate at which the line source intereepts the x axis, R&z’ is the
‘Hanke! function of the second kind and zevoth order, sud & is the wave number 2x/A.
“The impedence matrix of the “modified aray” comprises the rezl elements

Ryy =1, m=a,
= Sylklag - 20, m¥n, (64)
where J; denotes the Bassel function of the first kind and zeroth otder,

Rigure 9 shows elemsent patteras in the terminated-arsay environment for the conter
elements of uniform arrays as dotled lines. The elements of the array sre 2D = x radions
apart, and the armayvs coasist respectivaly, of 5, 15, and 25 elements. In each case the
centor element is excited by an incident wave caurying unit power. In coropering the re-
suits oblained with those for the infinite array (Appendix A) it must Be remembered that
the intinite-armay formulas are conventionally quoted for rédiation into a halfipace. Ae-
oount of this is taken if i directly computed atsolute power patiems are multiplied by
s factor of 2. For uniformity of presentation both the finitearray patiems and the
infinite-army pattern were further divided by kDjx. This has the effect of nommalizing
the element paileris for any spacing. The normalized infinitewrmay elemont pattem is
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shown as a solid line. It is clear that the element pattem for a matched array approaches
the wifinite-array result. The approach is oscillatocy (after the fashion of trigonometric
series) rather than smooth. For N = 25 ciemenis tae pattem closely follows the infinite-
array result except in the immediate neighborhood of radiation along the plane of the
array, 0 = 90°, Thic result is in agreement with the erpectations based on element ef-
ficiency [3].

Only half of each element pattern is shown in each cuse, hecause the power patterns
are sy mmetric wiih resgect to 4 = 0. In the case of linear or planar arrays, this symmetry
is always a fecture of (optimally) matched element patteyrs, since the currents exciting
each element of the ra:iating aperture are real (either in phase or 180° out of phase.)
That these currents are indeed real is evident from (60) or (61), for 8 = [6,9], that ie,
when only the 2h input to the feed network is excited by a unit incident wave.

The element pattern in the terminated-array environment for an edge element of the
N = 25 anray is shown n Fig, 10, Its shape is somewhat broadened when referred to a
cos 0 pattern and the peak gain is reduced approximately 0.7 dB.

Element patterns in the terminated-array environment for an array of N = 25 ele-
ments spaced kD = 4.0 radians apart are shown in Fig, 11. The element patterm for the
center eloment is shown in Fig. 11a, and the vdge effect present at this spacing is dis-
played in Figs. 11b, 11¢, and 11d. The centcr-elemant pattem in Fig, 11a displays a close
oscillatory approach to the infinite-array elemert pattern. The sharp break to a null at
84.8° in the infinite-array element pattern associated with the entry of a grating lobe is
evident also in the finite.array pattems. Of course the finite-array element pattems d-
not have an absolute null. As before, the largest deviations occur in the rwighborhood of
the array face (0 = 20°), The peak gain of the edge slement (Fig. 11b) is reduced by ap-
proximately 0.8 dB. In the second and third element from the ed= of the array (Figs.
11c and 11d) the sharpness of the features associated with entry of ihe grating lobe appear

-
&

Fig. 10—-Element pattern for the edge eloment
(¥ = 12) of & lUnear areay of line sources with
N « 25 eloments spaced kD » 7 rediany. apant

POWER PATTERN (normalized)
o
()
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somewhat smoothed. The overall effect of this smoothing is to narrow the main lobe of
the element pattemn.

In the preceding examples it was feasible to match the arrays for all excitations; that
is, Eq. (60) could be employed to compute the currents exciting the modified array. For
spacings kD < m we must be prepared to implement an appropriate partial match.

Consider now a closely spaced array of line sources, with elements spaced kD = 2.0
radians apart. The eigenvalues of the mutual-resistance matrix for the modified array are
listed in Table 1. It is clear that some of these eigenvalues imply active reflection coef-
ficients differing in magnitude only slightly from unity. This is in accordance with our
expectations based on the infinite-array model. In an infinite array with this close spricing
there is a continuum of (eigen) excitations for which the active reflection coefficient nuc-
essarily has unit magnitude. ’

Figure 12a shows the element pattern in the terminated array environment for the
center element of the array when the array is matched foi all those eigenexcitations for
which the eigenreflection-coefficient magnitude is |p(n)| < 0.5. The corresponding range
of eigenvalues of the mutual-resistance matrix is 0.33 < @Q,.(n) < 3.0. The remaining
eigenexcitations of the modified array are !~ft undisturbed. The eigenvalues which were
left unmatched are italicized in Table 1. Consequently 15 of the 25 eigenexcitations
were matched to achieve the pattern shown in Fig. 12a. Note that 15 is nearly the num-

. ber of half wavelengths in the aperture: NkD/m = 16.91. The fraction of elements which
may readily be matched is approximately equal to the ideal element efficiency of the cor-
responding infinite array, n = kD/x [5,9].

Figures 12b and 12c show the same element pattern when tolerances on the eigen-
values of the resistance matrix Q,(n) are respectively 0.05 < Q,(n) < 20 and 0.001 <
Q,(n) < 1000. These tolerances correspond to ignoring eigenreflection-coefficient mag-
nitudes |p(n)] > 0.9 and |p(n)]| > 0.998. When all eigenvalues are matched, a pattem
with wide oscillations results (Fig. 12d). As total match for all excitations is approached,
the pattern oscillations widen, and a large lobe spills over into visible space near 90°.

Thus the difficulties associated with matching extreme values of the active resistance
Q,(n) are akin to those involved in the attainment of supergain. Supergain is evidenced

Table 1--The 25 Eigenvalues @,(n) of the Mutual-Resistance Matrix for a Linear
Array of Line Sources With N = 26 Elements Spaced kD = 2.0 Radians Apart
(The eigenvalues in italics are outside the range 0.33 < Q,(n) < 3.0)

§.§8226 141119 1.07501 1.00214 6.23879% 1676
3.18452 1.26061 1.06742 0.862316 2.23649 % 1076
1.86831 1.22749 1.03141 1.837456% 1071 | 5.43821 X 1078
1.78140 1.14601 1.01972 1.83886 X 102 | 3.88444 x 1079
1.46741 1.121756 1.00769 1.25242X 1073 | 1.94222% 10-9

—
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even in the element patierns, The power pattemn for an element of the infinite array, as
computed from Hannan'’s formula, attributes to each element the normal gain kD cos ¢
associated with the area per array element {2]. (For the linear array 2nD/A replaces the
planar-array expression 47A/A2.) Thus power radiated in excess of the power per radian
predicted by Hannan’s formula (the solid line in Fig. 12) represents the degree of supex-
gain attained. This excess is slight as long as the active impedance mismatch (eigenre-
flection coefficients) tuned out are modest.

DISCUSSION AND CONCLUSIONS

The wider implications of the results presented in thie report lie in confirmation that
constraints on array performance predicted by the relatively simple infinite-array model
effectively operate as constraints on the performance of finite avrays in a manner and to
an extent illustrated by the detailed calculations presented. These constraints limit the
attainable element patterns, including specific features of these such as grating-lobe nuils,
and limit the attainable reduction of mutual coupling among antennas by appropriate
feed network design. Confirmation of the effectiveness of these constraints in finite
arrays is required, since the reasoning employed to establish thern in the case of the infi-
nate array cannot be carried over to the finite case. Indeed the general physical grounds
for the constraints disappear in the finite array. These physical grounds are replaced by
more complex and special mutual-coupling effects. Consequently the phrase “effective-
ness of the constraints” is used.

Reasoning based on the conservation of energy and symmetry shows that the pattern
of a single element excited by a unit incident wave in the environment of an infinite regu-
lar planar array of identical terminated elements must satisfy (2,3]

Dx
P() <~ cos 0. (66)

In narticular equality can hold only in the matched case, when the active reflection coef-
ficient (for all elements excited with uniform amplitude and linear phase) is zero. The
form of the element pattern for a matched infinite array is given explicitly by Eq. (Al)
of Appendix A. The generality of the physical grounds is such that (656) applies inde-
pendent of the type of antenna elements employed. This limitation is particularly severe
at wide angles (0 = «x/2) in that it entirely precludes radiation parallel to the plane of the
array. The finite arrays of line sources used as examples constitute a particularly rigorous
test of this prediction from the infinite-array model, since individually the linesource
elomonts radiate isotropically in the plane normal to the line source,

Figure 9 shows the extent to which this infinite-array constraint remnins effective.
As is also possible in the case of an infinite array with spacing kD, = m, where D, = A/2,
each finite array is matched for all excitations of the array. Obviously the constraint
would not apply at all to an array consisting of only a single element. Yet for an array
of only five elements the center element clearly shows the predicted generic behavior. As
one expects, when the number of elements in the array becomes larger, the effectiveness
of the constraint increases. Figure 10 shows that even in an edge element the pattern is
strongly modified in the direction predicted by the infinite-array model.
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The element pattern may display relatively sharp dips or nulls. In the infinite-ar:ay
model these may be classed as either necessary nulls or removable nuils [4]. The latter
nulls are removable in the sense that a feed network exists which can in principle Lune
out these nulls. The location of necessary nulls in the element pattesa is found on con-
sidering the operation of the antenna as a phased array. Such a nuli may occur in the
direction indicated by the main lobe whenever a grating lobe just enters visible space
(Appendiz A). Figure 1la shows how this feature is effectively reproduced by the center
element of a finite array of 25 elements. Again, even the edge element of the same array
(Fig. 10b) shows the influence of this null, even though the infinite-array model cannot
be expected to apply quantitatively near an array edge.

For closely spaced arrays the infinite-array constraints require zero radiation for cer-
tain excitations of the array, As has been stated, the general physical grounds for these
constraints do rot carry over to finite arrays. Thus the finite array can radiate (and can
therefore in principle be matched) for all excitations. When this match is in fact at-
tempted, that is, when the high degree of mismatch which replaces the absolute infinite-
array constraint is tuned out, the correspondence with the infinite-array model is lost.
This is illustrated by the element patterns shown in Fig, 12, In Fig. 12a only small mis-
matches are tuned out, whereas in Fig. 12d match for all excitations has been obtained
in contradiction to the constraints of the infinite-array model. Figures 12b and 12c show
various stages between these extremes. In Fig. 12d, as expected, correspondence with the
infinite-array model is largely lost. In particular the element produces substantial radia-
tion directed along the array. The generally unsatisfactory nature of this pattern com-
mends acceptance of the constraints of the infinite-array model in setting design objectives
for practical arrays.

The patterns shown in Fig, 11a suggest another application for suitably matched
arrays. Appropriate placement of the necessary nulls synthesizes a pattem which is nearly
constant interior to the nulls and is reduced by 5 dB in the region outside the null, van-

ishing along the array face.

ACKNOWLEDGMENTS

The author acknowledges constructive comments from Dr, T. L. ap Rhys and
Mr. J. P. Shelton during the preparation of this report.

REFERENCES

1. J.L. Allen, “Gain snd Impedance Variation ir Scanned Dipole Arrays,” IRE Transce-
" tions on Antennas and Propagation AP-10, 666~672 (Sept. 1962),

2. P.W. Honnan, “The Element-Gain Paradox for a Phased-Array Antenns,” IEEE Trans-
actions on Antennas and Propagation AP-12, 423-433 (July 1964),

3. W. Wasylkiwskyj and W.K. Kahn, “Element Patterns and Active Reflection Coefficient
in Uniform Phased Arrays,” IXEE Transactions on Antennas and Propagation AP-22,
207-212 (Mar. 1974).




4,

10.

11,

12,

13.

14,

WALTER K. KARN

‘W. Wasylkiwskyj and W.K. Kahn, “Element Pattern Bounds in Uniform Phased

Arrays,” Presented at URSI Fall Meeting, Boulder, Colorado, Oct. 1976; Digest Ref-
erence: Sessions VI-11, Arrays, p. 264,

W. Wasylkiwskyj and W.K. Kahn, “Efficiency as a Measure of Size of a Phased-Array
Antenna,” IEEE Transactions on Antennas and Propagation AP.21, 879-884 (Nov,
1973). ’

D.M. Sazonov and B.A. Mishustin, “Theory of Multibeam Antenna Arrays with In-
teracting Elements,” Radio Engineering and Electronic Physics 13 (No. 8), 1186-
1193 (1968).

D.E. Bergfried, “An Investigation of Transmission Through Linear Multiport Net-
works with Application to the Theory of Array Antennas,” Dissertation for the de-
gree Doctor of Science, The George Washington University, Washington, D.C., June
1978.

D.E. Bergfried and W.K. Kahn, ‘‘Impedance Matching of Phased Array Antennas for
all Excitations by Connecting Networks,” 1973 G-AP International Symposium,
Aug. 22-24, Boulder, Colorado, Digest Reference: Session 20, Array Theory,

pp. 124-126.

W.K. Kahn, “Efficiency of a Radiating Element in Circular Cylindrical Arrays,” IEEE
Transactions on Antennas and Propagation AP-19, 115-117 (Jan. 1971).

L.B. Felsen and W.K. Kahn, “Transfer Characteristics of 2N-Port Networks,” pp. 477~
512 in Proceedings of the Symposium on Millimeier Waves, P.I.B. Symposium Series,
Vol. IX, 1959.

W. Wasylkiwskyj and W.K. Kahn, ‘“Theory of Mutual Coupling Among Minimum-
Scattering Antennas,” IEEE Transactions on Antennas and Propagation AP-18, 204~
216 (Mar. 1970).

W.K. Kahn, “Scattering Equivalent Circuits for Common Symmetrical Junctions,”
IRE Transactions on Circuit Theory CT-3, 121-127 (June 1956).

N. Amitay, V. Galindo, and C.P. Wu, Theory and Analysis of Phased Array Antennas,
Wiley-Interscience, New York, Ch, 1, 1972.

G.V. Borgiotti, *‘A Novel Expression for the Mutual Admittance of Planar Radiating
Elements,” IEEE Transactions on Antennas and Propagation, AP-16, 329-333 (May
1968).




Appendix A
ELEMENT PATTERNS OF A MATCHED INFINITE ARRAY

A single element of an infinite planar lattice of identical elements is excited by a
unit incident wave, The remaining elements (or their corresponding ports at the input to
an interconnecting feed network) are terminated. The feed network has been adjusted or
tuned so that, if all elements were excited with uniform amplitude and linear progressive
phase, the array would be matched at all scan angles. The element pattern produced
under these conditions was found in Ref. 4. A simplified planar array may be constructed
as a linear array of souxces, each of which has an infinite extent in the direction normal
to the array axis. For this special case the resulting element pattern is given by

-1
o D P
mmh%mw)1+z.%§G%%), (a1)
m#0 m

where

ﬁ(o) = the limiting element pattern in the terminated-array environment obtained
when the array is matched,

P(0) = any element pattem in an arbitrarily terminated environment such as, e.g.,
the pattem of a singlo excited element of the original (unmatched) array
when all other elements are open-circuited,

6 = pattern angle measured from the z axis (in the x2 plane), 0 = G,

6,, = grating-lobe pattem angle defined by the equation

il = 6n0 - mp-, m= i, £2, ., (AD)

X
Dy = spacing along the x axis, and
A = wavelength.

The summation in Eq. (Al) extends over all real angles 8,,, m = 11, 2, ..., that is, those
vajues of m, m # 0, such that :

<1. (A3)

sinO-m-I;‘;

The most significant feature of Eq. (Al) resides in the singularities of the term
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P®Om) cos 6
—_— e, 4
mZ‘;o P(@) cosf,, (A4)

The ratios P(0,,)/P(f) are shown to be invariant, that is, the same for any element pattern
of a given antenna element independent of termination or (uniform) interconnecting feed
network. Each singularity of (A4) corresponds to a necessary null of the element pattem
in the terminated-array environment.




